11 research outputs found

    Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs

    Get PDF
    Performance in hardware has been demonstrated to be an important factor in the evaluation of candidates for cryptographic standards. Up to now, no consensus exists on how such an evaluation should be performed in order to make it fair, transparent, practical, and acceptable for the majority of the cryptographic community. In this report, we formulate a proposal for a fair and comprehensive evaluation methodology, and apply it to the comparison of hardware performance of 14 Round~2 SHA-3 candidates. The most important aspects of our methodology include the definition of clear performance metrics, the development of a uniform and practical interface, generation of multiple sets of results for several representative FPGA families from two major vendors, and the application of a simple procedure to convert multiple sets of results into a single ranking. The VHDL codes for 256 and 512-bit variants of all 14 SHA-3 Round 2 candidates and the old standard SHA-2 have been developed and thoroughly verified. These codes have been then used to evaluate the relative performance of all aforementioned algorithms using ten modern families of Field Programmable Gate Arrays (FPGAs) from two major vendors, Xilinx and Altera. All algorithms have been evaluated using four performance measures: the throughput to area ratio, throughput, area, and the execution time for short messages. Based on these results, the 14 Round 2 SHA-3 candidates have been divided into several groups depending on their overall performance in FPGAs

    Comprehensive Evaluation of High-Speed and Medium-Speed Implementations of Five SHA-3 Finalists Using Xilinx and Altera FPGAs

    Get PDF
    In this paper we present a comprehensive comparison of all Round 3 SHA-3 candidates and the current standard SHA-2 from the point of view of hardware performance in modern FPGAs. Each algorithm is implemented using multiple architectures based on the concepts of iteration, folding, unrolling, pipelining, and circuit replication. Trade-offs between speed and area are investigated, and the best architecture from the point of view of the throughput to area ratio is identified. Finally, all algorithms are ranked based on their overall performance in FPGAs. The characteristic features of each algorithm important from the point of view of its implementation in hardware are identified

    A Comprehensive Framework for Fair and Efficient Benchmarking of Hardware Implementations of Lightweight Cryptography

    Get PDF
    In this paper, we propose a comprehensive framework for fair and efficient benchmarking of hardware implementations of lightweight cryptography (LWC). Our framework is centered around the hardware API (Application Programming Interface) for the implementations of lightweight authenticated ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the minimum compliance criteria, interface, and communication protocol supported by the LWC core. The proposed API is intended to meet the requirements of all candidates submitted to the NIST Lightweight Cryptography standardization process, as well as all CAESAR candidates and current authenticated cipher and hash function standards. In order to speed-up the development of hardware implementations compliant with this API, we are making available the LWC Development Package and the corresponding Implementer’s Guide. Equipped with these resources, hardware designers can focus on implementing only a core functionality of a given algorithm. The development package facilitates the communication with external modules, full verification of the LWC core using simulation, and generation of optimized results. The proposed API for lightweight cryptography is a superset of the CAESAR Hardware API, endorsed by the organizers of the CAESAR competition, which was successfully used in the development of over 50 implementations of Round 2 and Round 3 CAESAR candidates. The primary extensions include support for optional hash functionality and the development of cores resistant against side-channel attacks. Similarly, the LWC Development Package is a superset of the part of the CAESAR Development Package responsible for support of Use Case 1 (lightweight) CAESAR candidates. The primary extensions include support for hash functionality, increasing the flexibility of the code shared among all candidates, as well as extended support for the detection of errors preventing the correct operation of cores during experimental testing. Overall, our framework supports (a) fair ranking of candidates in the NIST LWC standardization process from the point of view of their efficiency in hardware before and after the implementation of countermeasures against side-channel attacks, (b) ability to perform benchmarking within the limited time devoted to Round2 and any subsequent rounds of the NIST LWC standardization process, (c) compatibility among implementations of the same algorithm by different designers and (d) fast deployment of the best algorithms in real-life applications

    GMU Hardware API for Authenticated Ciphers

    Get PDF
    In this paper, we propose a universal hardware API for authenticated ciphers, which can be used in any future implementations of authenticated ciphers submitted to the CAESAR competition. A common interface and communication protocol would help in reducing any potential biases, and would make the comparison in hardware more reliable and fair. By design, our proposed API is equally suitable for hardware implementations of authenticated ciphers developed manually (at the register-transfer level), and those obtained using high-level synthesis tools. Our implementation of the proposed interface and communication protocol includes universal, open-source pre processing and post-processing units, common for all CAESAR candidates. Apart from the full documentation, examples, and the source code of the pre-processing and post-processing units, we are making available in public domain a) a universal testbench to verify the functionality of any CAESAR candidate implemented using the GMU hardware API, b) a Python script used to automatically generate test vectors for this testbench, c) VHDL wrappers used to determine the maximum clock frequency and the resource utilization of all implementations, and d) RTL VHDL source codes of high-speed implementations of AES and the Keccak Permutation F. We hope that the existence of these resources will substantially reduce the time necessary to develop hardware implementations of all CAESAR candidates for the purpose of evaluation, comparison, and future deployment in real products

    CAESAR Hardware API

    Get PDF
    In this paper, we define the CAESAR hardware Application Programming Interface (API) for authenticated ciphers. In particular, our API is intended to meet the requirements of all algorithms submitted to the CAESAR competition. The major parts of our specification include: minimum compliance criteria, interface, communication protocol, and timing characteristics supported by the core. All of them have been defined with the goals of guaranteeing (a) compatibility among implementations of the same algorithm by different designers, and (b) fair benchmarking of authenticated ciphers in hardware

    A Novel Permutation-based Hash Mode of Operation FP and the Hash Function SAMOSA

    No full text
    status: publishe

    Comprehensive Comparison of Hardware Performance of Fourteen Round 2 SHA-3 Candidates with 512-bit Outputs Using Field Programmable Gate Arrays.” The Second SHA-3 Candidate Conference

    No full text
    Abstract. In this paper, we extend our evaluation of the hardware performance of 14 Round 2 SHA-3 candidates, presented at CHES 2010, to the case of high security variants, with 512 bit outputs. A straightforward method for predicting the performance of 512-bit variants, based on the results for 256-bit versions of investigated hash functions is presented, and confirmed experimentally. The VHDL codes for 512-bit variants of all 14 SHA-3 Round 2 candidates and the old standard SHA-2 have been developed and thoroughly verified. These codes have been then used to evaluate the relative performance of all aforementioned algorithms using seven modern families of Field Programmable Gate Arrays (FPGAs) from two major vendors, Xilinx and Altera. The results point to very significant differences among all evaluated algorithms in terms of both throughput and area. Only two candidates, Keccak and CubeHash, outperform SHA-512 in terms of the primary optimization target used in this study, throughput to area ratio. 1

    Security Margin Evaluation of SHA-3 Contest Finalists through SAT-Based Attacks

    Get PDF
    Part 2: Security, Access Control and Intrusion DetectionInternational audienceIn 2007, the U.S. National Institute of Standards and Technology (NIST) announced a public contest aiming at the selection of a new standard for a cryptographic hash function. In this paper, the security margin of five SHA-3 finalists is evaluated with an assumption that attacks launched on finalists should be practically verified. A method of attacks is called logical cryptanalysis where the original task is expressed as a SATisfiability problem. To simplify the most arduous stages of this type of cryptanalysis and helps to mount the attacks in a uniform way a new toolkit is used. In the context of SAT-based attacks, it has been shown that all the finalists have substantially bigger security margin than the current standards SHA-256 and SHA-1

    ICEPOLE: High-speed, hardware-oriented authenticated encryption

    Get PDF
    This paper introduces our dedicated authenticated encryption scheme ICEPOLE. ICEPOLE is a high-speed hardware-oriented scheme, suitable for high-throughput network nodes or generally any environment where specialized hardware (such as FPGAs or ASICs) can be used to provide high data processing rates. ICEPOLE-128 (the primary ICEPOLE variant) is very fast. On the modern FPGA device Virtex 6, a basic iterative architecture of ICEPOLE reaches 41 Gbits/s, which is over 10 times faster than the equivalent implementation of AES-128-GCM. The throughput-to-area ratio is also substantially better when compared to AES-128-GCM. We have carefully examined the security of the algorithm through a range of cryptanalytic techniques and our findings indicate that ICEPOLE offers high security level
    corecore